
www.numerical.kirkup.info 
 

Polynomial Interpolation 

We often know the value of a function 𝑓(𝑥) at a set of n points in a range [𝑎, 𝑏] with  𝑎 =

𝑥1 <   𝑥2 < ⋯ < 𝑥𝑛 = 𝑏 and we are required to determine an estimate of 𝑓(𝑥) at any 

value of ∊ [𝑎, 𝑏].  This method of approximation is called interpolation1. The most 

common form of interpolation is to join the points by a polynomial and this is termed 

polynomial interpolation. 

In general a set of n points (𝑥𝑖, 𝑓(𝑥𝑖)) for i=1,2,…n can be interpolated by a polynomial of 

degree n-1: 

𝑓(𝑥) ≈ 𝑝𝑛−1(𝑥) = 𝑎𝑛−1 𝑥
𝑛−1 + 𝑎𝑛−2 𝑥

𝑛−2 + … 𝑎1 𝑥 +  𝑎0 .          (1) 

The functions 𝑓(𝑥) and 𝑝𝑛−1(𝑥) match at the interpolation points; 𝑝𝑛−1(𝑥𝑖) = 𝑓(𝑥𝑖) for 

= 1,2, … 𝑛 . In special cases, for example when 𝑓(𝑥) is a polynomial of degree less than 

n-1, then the polynomial interpolant has a degree equal to the degree of 𝑓(𝑥), and the 

function 𝑓(𝑥) and 𝑝𝑛−1(𝑥) are identical. 

The polynomial 𝑝𝑛−1(𝑥) can be considered to provide an approximation of 𝑓(𝑥), within 

some range. If the range is within [ 𝑥1, 𝑥𝑛] then the process is termed interpolation. If 

the technique is used to estimate a value of 𝑓(𝑥) outside the range [ 𝑥1, 𝑥𝑛] then it is 

termed extrapolation. The polynomial interpolant than passes through a set of points 

can be found by a technique termed Newton’s divided difference method. 

Newton’s Divided Difference Method 

For a set of n points (𝑥𝑖, 𝑓(𝑥𝑖)) for i=1,2,…n, the Newton’s divided difference method 

involves first forming a table of differences as follows. 

𝑥𝑖 𝑓(𝑥𝑖) 1st difference 2nd difference   
𝑥1 𝑓1    ………..  
𝑥2 𝑓2 𝑓2 − 𝑓1

𝑥2 − 𝑥1
= 𝐹22  

 ………..  

𝑥3 𝑓3 𝑓3 − 𝑓2

𝑥3 − 𝑥2
= 𝐹32 

𝐹32 − 𝐹22

𝑥3 − 𝑥1
= 𝐹33 

  

𝑥4 𝑓4  𝑓4 − 𝑓3

𝑥4 − 𝑥3
= 𝐹42 

𝐹42 − 𝐹32

𝑥4 − 𝑥2
= 𝐹43 

  

𝑥5 𝑓5 𝑓5 − 𝑓4

𝑥5 − 𝑥4
= 𝐹52 

𝐹52 − 𝐹42

𝑥5 − 𝑥3
= 𝐹53 

  

. 

. 

. 

. 

. 

. 

𝑓6 − 𝑓5

𝑥6 − 𝑥5
= 𝐹62 

𝐹62 − 𝐹52

𝑥6 − 𝑥4
= 𝐹63 

  

𝑥𝑛−2 𝑓𝑛−2  . 
. 
. 

. 

. 

. 

  

𝑥𝑛−1 𝑓𝑛−1  𝑓𝑛−1 − 𝑓𝑛−2

𝑥𝑛−1 − 𝑥𝑛−2
= 𝐹𝑛−1 2 

. 

. 

. 

  

𝑥𝑛 𝑓𝑛  𝑓𝑛 − 𝑓𝑛−1

𝑥𝑛 − 𝑥𝑛−1
= 𝐹𝑛 2 

𝐹𝑛 2 − 𝐹𝑛−1 2

𝑥𝑛 − 𝑥𝑛−2
= 𝐹𝑛 3 

 𝐹 𝑛 𝑛−1 − 𝐹𝑛−1 𝑛−1

𝑥𝑛 − 𝑥1
= 𝐹𝑛 𝑛 

 

 
1 Approximation: An introduction to interpolation and curve fitting.  

http://www.numerical.kirkup.info/
../Introduction/index.htm


www.numerical.kirkup.info 
 

The polynomial interpolant 𝑝𝑛−1(𝑥) may be defined using the diagonal of values and the 

values of 𝑥𝑖, as follows. 

𝑝𝑛−1(𝑥) = 𝑓1 + 𝐹22(𝑥 − 𝑥1) + 𝐹13(𝑥 − 𝑥1)(𝑥 − 𝑥2) + ⋯

+  𝐹1𝑛(𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛−1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computational issues 

Normally the divided differences are centred, when they are laid out. So for example the 

normal layout for the divided difference above is as follows. 

𝑥𝑖  𝑓(𝑥𝑖) 1st difference 2nd difference 3rd difference 
     
-2 -51    
  16   
1 -3  1  
  21  3 
3 39  19  
  78   
4 117    

 

 

Example 

Find the cubic interpolant that passes through the data points  (0, 2), (2, 5), (3, 7) and (6,3).  

𝑥𝑖  𝑓(𝑥𝑖) 1st difference 2nd difference 3rd difference 
-2 -51    
1 -3 16   
3 39 21 1  
4 117 78 19 3 

Hence the cubic interpolant is  

𝑝3(𝑥) = −51 + 16(𝑥 + 2) + (𝑥 + 2)(𝑥 − 1) + 3(𝑥 + 2)(𝑥 − 1)(𝑥 − 3) 

We note that the interpolant is a cubic. Just to check that the interpolant passes through the 

data points, we note that 

 

𝑝3(−2) = −51 + 16(−2 + 2) + (−2 + 2)(−2 − 1) + 3(−2 + 2)(−2 − 1)(−2 − 3) = −51, 

𝑝3(1) = −51 + 16(1 + 2) + (1 + 2)(1 − 1) + 3(1 + 2)(1 − 1)(1 − 3) = −51 + 16 ⨯ 3 + 0 + 0 = −3 

𝑝3(3) = −51 + 16(3 + 2) + (3 + 2)(3 − 1) + 3(3 + 2)(3 − 1)(3 − 3) = −51 + 16 ⨯ 5 + 5 ⨯ 2 + 0

= 39 

𝑝3(4) = −51 + 16(4 + 2) + (4 + 2)(4 − 1) + 3(4 + 2)(4 − 1)(4 − 3) = −51 + 16 ⨯ 6 + 6 ⨯ 3 + 3 ⨯

6 ⨯ 3 ⨯ 1 = 117, 

and hence that the interpolant passes through the points. 

 

http://www.numerical.kirkup.info/


www.numerical.kirkup.info 
 

However, from a computational point of view, the layout adopted in the tables above 

demonstrates that the original column can be repeatedly overwritten from the diagonal 

downward. The final column of values are the ones used in the divided difference 

polynomial equation. This is economical in terms of use of computer memory. 

Further Examples 

In the following examples Newton’s divided difference method for approximating the 

function 𝑒 𝑥 on the domain [0,3] using equidistant interpolation points. These examples 

are also illustrated on an Excel spreadsheet2. Firstly, let us approximate the function by 

a quadratic. The following table shows the value of the function at the three equidistant 

points that are used for interpolation. 

𝑥𝑖  𝑓(𝑥𝑖) 
0 1 

1.5 4.481689 

3 20.08554 

 

The following graph compares the function 𝑒 𝑥 with the quadratic interpolant. 

 

Firstly, let us approximate the function by a cubic. The following table shows the value 

of the function at the four equidistant points that are used for interpolation. 

𝑥𝑖  𝑓(𝑥𝑖) 
0 1 

1 2.718282 

2 7.389056 

3 20.08554 

 
 

2 Polynomial Interpolation (Spreadsheet) 

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5

x

Comparison on exp(x) and p2(x) on [0,3]

f(x)

p_2(x)

http://www.numerical.kirkup.info/
https://www.spreadsheets.kirkup.info/Numerical%20Approximation/Polynomial%20Interpolation.htm


www.numerical.kirkup.info 
 

The following graph compares the function 𝑒 𝑥 with the cubic interpolant. 

 

 

It may be thought that the higher the degree of the interpolating polynomial, the more 

accurate the interpolant is. This is not the case, unless we choose the interpolation 

points carefully. For example the following graph interpolates the function 𝑓(𝑥) =
1

1+𝑥2 in [-3,3] with seven equidistant interpolation points. 

 

 

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5

x

Comparison on exp(x) and p3(x) on [0,3]

f(x)

p_3(x)

0

0.2

0.4

0.6

0.8

1

1.2

-4 -3 -2 -1 0 1 2 3 4

x

Comparison on f(x) and p6(x) on [0,3]

f(x)

p_6(x)

http://www.numerical.kirkup.info/

